
Shokichi Ohuchi, Akira Okuyama, Hiroshi Naganawa, Takaaki Aoyagi and Hamao Umezawa

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

(Received for publication January 6, 1984)

The biosynthetic pathways of arphamenines A and B were studied. Arphamenine A was derived from acetic acid, L-arginine and L-phenylalanine, and arphamenine B from acetic acid, L-arginine and L-tyrosine.

As reported in our previous papers^{1,2)}, two potent aminopeptidase **B** inhibitors, arphamenines **A** and **B** were found in the culture filtrates of *Chromobacterium violaceum* BMG361-CF4. Their structures were determined to be 5-amino-8-guanidino-4-oxo-2-phenylmethyl octanoic acid (**A**) and 5-amino-8-guanidino-2-(4-hydroxyphenylmethyl)-4-oxo-octanoic acid (**B**), respectively.

To study the biosynthetic precursors of these compounds, ¹⁴C-labeled acetate, L-arginine, L-phenylalanine and L-tyrosine were chosen for the radiolabeling experiments as they promoted production of arphamenines⁸⁾. The role of acetate as the source of the methylene ketone moiety ($-\mathring{C}H_2-\mathring{C}O-$) in arphamenines was examined, using sodium [1-¹⁸C]**acetate, sodium [2-¹⁸C]*acetate or sodium [1,2-¹⁸C]acetate.

Materials and Methods

Isotope-labeled Compounds

L-[$U_{-1^4}C$]Arginine (327.0 mCi/mmol), L-[*methyl*-¹⁴C]methionine (48.7 mCi/mmol), L-[$U_{-1^4}C$] phenylalanine (510.0 mCi/mmol), L-[$U_{-1^4}C$]tyrosine (497 mCi/mmol), sodium [1-¹⁴C]acetate (56.0 mCi/mmol) and sodium [2-¹⁴C]acetate (51.0 mCi/mmol) were purchased from New England Nuclear, U.S.A. Sodium [2-¹³C]acetate (92.2% enrichment) was purchased from the British Oxygen Co. Ltd., England. DL-[1-¹⁴C]Arginine (35~45 mCi/mmol), sodium [1-¹³C]acetate (90% enrichment) and sodium [1,2-¹³C] acetate (90% enrichment) were purchased from Commissarat a L'Energie Atomique, France.

Assay of Anti-aminopeptidase B Activity

Inhibition of aminopeptidase B activity of rat liver by arphamenines was determined as reported previously⁴⁾.

Incorporation of Radioactivity into Arphamenines

Cells of *C. violaceum* BMG361-CF4 previously grown on KRAINSKY's asparagine glucose agar slants were incubated in 110 ml of a medium consisting of 3% soluble starch, 0.5% Prorich (Ajinomoto Co.), 1.2% corn gluten meal and 0.2% CaCO₃, in a 500-ml Erlenmeyer flask for 20 hours at 27°C on a rotary shaker (180 rpm). After inoculation of 0.5 ml of the seed culture thus prepared into the same medium (110 ml, $\pm 1\%$ L-phenylalanine), the incubation was carried out as before. ¹⁴C-Labeled compounds at 10 μ Ci (except DL-[1-¹⁴C]arginine, 20 μ Ci) were added at the times indicated in Table 1 and the biosynthetic experiments were continued for 4 hours.

- Fig. 1. Production of arphamenine A by C. violaceum BMG361-CF4.
 - Medium: Soluble starch 3%, Prorich 0.5%, corn gluten meal 1.2%, L-Phe 1.0%, CaCO₃ 0.2%.

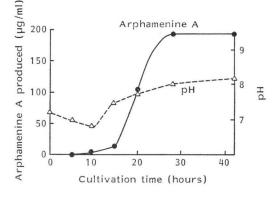


Table 1. Incorporation of ¹⁴C-labeled compounds into arphamenines.

Labeled compounds	Medium	Incorporation (%)
Sodium [1-14C]acetate	Med-II	1.6
Sodium [2-14C]acetate	Med-II	2.1
$L-[U-^{14}C]Arg$	Med-II	28.0
DL-[1-14C]Arg	Med-II	0.03
L-[U-14C]Phe	Med-I	11.4*1
$L-[U-^{14}C]Tyr$	Med-I	4.7*2
L-[Methyl-14C]Met	Med-II	0.05

Med- I: Soluble starch 3%, Prorich 0.5%, corn gluten meal 1.2%, CaCO₃ 0.2%.

Med-II: Med-I+L-Phe (1%).

Time of addition of ¹⁴C-labeled compounds: Med-I 8 hours, Med-II 15 hours.

*1 Incorporated ratio arphamenine A/B was 99:1.

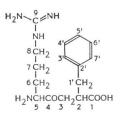
*² Incorporated ratio arphamenine A/B was 0.3: 99.7.

Twenty ml of culture filtrate were chromatographed on a column of CM-Sephadex C-25 (20 ml) which was developed with 0.5 M NaCl. Fractions containing arphamenines were combined (25 ml). Five-tenth ml of the combined solution was applied to a TLC plate of silica gel (E. Merck, Art5721) and developed with the solvent system: butanol - acetic acid - water (4:1:1) or chloroform - methanol - acetic acid - water (10:4:1:1). Arphamenines were visualized with 0.4% solution of ninhydrin in acetone. The area containing the arphamenines was cut out from the plate and transferred to vials for counting. Eight ml of scintillation cocktail (Aquasol-2, New England Nuclear, U.S.A.) were added and the radioactivity of each sample was measured in a Beckman LS9800 liquid scintillation counter.

Preparation of ¹³C-Labeled Arphamenine A

After strain BMG361-CF4 was cultured in 110 ml of the L-phenylalanine-containing medium for 15 hours, 50 mg of sodium [1-¹⁸C]acetate, sodium [2-¹⁸C]acetate or sodium [1,2-¹⁸C]acetate plus 100 mg of unlabeled sodium acetate and 110 mg of L-arginine monohydrochloride were added. The incubation was continued for 4 hours.

One hundred ml of culture filtrate was chromatographed on a column of CM-Sephadex C-25 (100 ml) which was developed with a linear gradient of NaCl from 0 to 0.5 m. Arphamenine A-containing fractions were combined and desalted on an Amberlite XAD-4 adsorption column; elution was carried out with 50% aqueous acetone. The crude arphamenine A thus obtained was rechromatographed on CM-Sephadex C-25 using 0.2 m NaCl as eluant. The purified arphamenine A-containing fractions were subsequently desalted on a column of Sephadex LH-20: elution of ¹⁸C-labeled arphamenine A (10~20 mg) was attained with water.

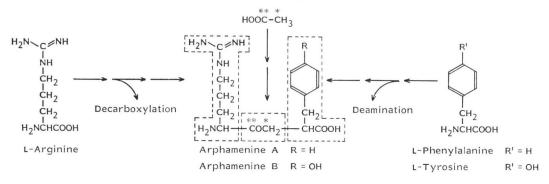

¹³C NMR Spectrometry

Fourier-transform ¹³C NMR spectra were obtained on a Jeol FX-200 NMR spectrometer operating at 50.1 MHz. Each sample was dissolved in 0.25 ml of D_2O and was run in a tube with 5 mm diameter at 25°C. The running conditions were as follows: spectral width: 15 KHz, pulse width: 2.5 μ seconds and repetition time: 1.73 seconds. Accumulations were as follows: 5,000 for arphamenine A (10 mg) labeled with [1-¹³C]acetate, 10,000 for arphamenine A (10 mg) labeled with [2-¹³C]acetate and 31,888 for arphamenine A (4.8 mg) labeled with [1,2-¹³C]acetate.

Results and Discussion

C. violaceum BMG361-CF4 produced only arphamenine A in a L-Phe-containing medium; production occurred at 15 hours as shown in Fig. 1. By contrast, in the same medium without L-phenylalanine,

Table 2. ¹⁸C NMR spectral data for arphamenine A, including enrichments from labeled precursors.



1 182.6 2 45.6 3 41.8 4 207.2 5 58.9 6 26.8 7 24.1	20*1) 1. 1. 1. 40	Enrichment factor* ³		
	Multiplicity*2	[1-13C]Acetate	[2-13C]Acetate		
1	182.6	S	0.48	0.64	
2	45.6	d	0.50	0.74	
3	41.8	t	1.0	10.8	
4	207.2	S	10.4	0.66	
5	58.9	d	0.56	0.64	
6	26.8	t	0.59	0.72	
7	24.1	t	0.73	0.80	
8	41.1	t	0.74	1.20	
9	157.7	S	0.78	0.85	
1'	38.6	t	0.68	0.78	
2'	140.3	S	1.00	1.00	
3',7'	129.4	$d \times 2$	0.75	0.84	
4',6'	129.9	$d \times 2$	0.84	0.94	
5'	127.3	d	0.66	0.76	

*1 In D_2O (internal dioxane δ 67.4).

*2 Multiplicities in the off-resonance decoupling: s, singlet; d, doublet; t, triplet.

*³ Intensity of each peak in the labeled arphamenine A devided by that of the corresponding peak in the unlabeled arphamenine A, normalized to give a ratio of 1.00 for the peak of 2'-C.

Fig. 2. Building blocks for arphamenines A and	Fig.	2.]	Building	blocks	for	arphamenines	A	and	В	
--	------	------	----------	--------	-----	--------------	---	-----	---	--

both arphamenines A and B production occurred at 8 hours. Thus, ¹⁴C-labeled compounds were added to the respective media at 8 and 15 hours.

As shown in Table 1, L-[U-¹⁴C]arginine, sodium [1-¹⁴C]acetate and sodium [2-¹⁴C]acetate were efficiently incorporated into arphamenine A, whereas DL-[1-¹⁴C]arginine and L-[*methyl*-¹⁴C]methionine were not incorporated to any significant extent. In addition, L-[U-¹⁴C]phenylalanine was incorporated into arphamenine A, but not appreciably into arphamenine B. On the other hand, L-[U-¹⁴C]tyrosine was incorporated into arphamenine B, but not into arphamenine A. In both cases the ratio of incorpora-

tion of radiolabel into the arphamenines A and B did not change during a further 16 hours' incubation after the addition of ¹⁴C-labeled compounds.

These experimental results indicated that the *N*-terminal moiety of arphamenines A and B was derived from L-arginine, the *C*-terminal moiety was derived from L-phenylalanine (arphamenine A) and L-tyrosine (arphamenine B) and the methylene ketone $(-\overset{4}{CO}-\overset{3}{CH}_{2}-)$ moiety was derived from acetate.

In order to establish the distribution of radiocarbon from acetate, ¹⁸C-labeled arphamenine A was prepared with sodium [1-¹⁸C]acetate, sodium [2-¹⁸C]acetate or sodium [1,2-¹⁸C]acetate. As shown in Table 2, ¹⁸C NMR spectra of ¹⁸C-labeled arphamenine A enriched with sodium [1-¹⁸C]acetate and sodium [2-¹⁸C]acetate indicated that the enrichment of ¹⁸C occurred only at C-4 or C-3, respectively. ¹⁸C NMR spectra of ¹⁸C-labeled arphamenine A enriched with sodium [1,2-¹⁸C]acetate also indicated the spin coupling between C-3 ($J_{e-e} = 44$ Hz) and C-4*.

From the results of our experiments, the building blocks for arphamenines are L-arginine, L-phenylalanine or L-tyrosine and acetic acid, as shown in Fig. 2. The fact that $L-[U^{-14}C]$ phenylalanine was only incorporated into arphamenine A whereas $L-[U^{-14}C]$ tyrosine was only incorporated into arphamenine B suggests that arphamenine A is not converted to arphamenine B.

In a subsequent paper, we will report on the complete biosynthetic pathway to arphamenines⁵.

Acknowledgment

This work was partly supported by a contract from the Division of Cancer Treatment, National Cancer Institute, NO1-CM-57009, U.S.A.

References

- UMEZAWA, H.; T. AOYAGI, S. OHUCHI, A. OKUYAMA, H. SUDA, T. TAKITA, M. HAMADA & T. TAKEUCHI: Arphamenines A and B, new inhibitors of aminopeptidase B, produced by bacteria. J. Antibiotics 36: 1572~1575, 1983
- OHUCHI, S.; H. SUDA, H. NAGANAWA, T. TAKITA, T. AOYAGI, H. UMEZAWA, H. NAKAMURA & Y. IITAKA: The structure of arphamenines A and B. J. Antibiotics 36: 1576~1580, 1983
- 3) OHUCHI, S.; A. OKUYAMA, K. KAWAMURA, T. AOYAGI & H. UMEZAWA: The improvement of productivity and selective production of arphamenines. Agric. Biol. Chem. 48(6): 1984, in press
- UMEZAWA, H.; T. AOYAGI, H. SUDA, M. HAMADA & T. TAKEUCHI: Bestatin, an inhibitor of aminopeptidase B, produced by actinomycetes. J. Antibiotics 29: 97~99, 1976
- 5) OKUYAMA, A.; S. OHUCHI, T. TANAKA, T. AOYAGI & H. UMEZAWA: Cell-free biosynthesis of arphamenine A. in preparation.